Mohon tunggu...
Fortuza Pake
Fortuza Pake Mohon Tunggu... pelajar/mahasiswa -

ingin mencoba sesuatu yang baru

Selanjutnya

Tutup

Nature

PLTN(pembangkit Listrik Tenaga Nuklir) Vs PLTU(Pembangkit Listrik Tenaga Uap Batubara) Untuk Energi pembangikt Listrik Di Masa Mendatang

21 September 2011   11:34 Diperbarui: 26 Juni 2015   01:45 5309
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Nature. Sumber ilustrasi: Unsplash

Hubungan yang erat antara penggunaan teknologi dan kerusakan lingkungan telah menyadarkan masyarakat untuk melakukan modifikasi dan inovasi dari teknologi yang ada saat ini. Penggunaan bahan bakar fosil, seperti batubara untuk pembangkit listrik akan dapat meningkatkan emisi partikel, SO2, NOx, dan CO2. Adanya peraturan pemerintah tentang standar emisi untuk pembangkit listrik di Indonesia, mendorong upaya untuk selalu mengurangi emisi tersebut.

Ketersediaan sumber energi dan adanya energi, terus dilakukan inovasi pada teknologi teknologi yang dapat mengubah sumber energi yang memproduksi, mengkonversi, menyalurkan, menjadi bentuk yang bermanfaat bagi masyarakat, dan menggunakan energi sehingga diperoleh merupakan salah satu faktor pemacu pertumbuhan teknologi yang lebih efisien dan ramah perekonomian dunia dan hal ini telah tercatat dalam lingkungan.

Batubara diperkirakan paling dominan digunakan sebagai bahan bakar untuk pembangkit listrik di masa datang. Penggunaan batubara dalam jumlah yang besar akan meningkatkan emisi gas buang di udara. Salah satu cara untuk mengurangi emisi adalah dengan menggunakan teknologi bersih. Ada dua cara dalam menerapkan teknologi tersebut, yaitu pertama diterapkan pada tahapan setelah pembakaran dan kedua diterapkan sebelum pembakaran batubara. Pada tahap pertama dapat digunakan teknologi denitrifikasi, desulfurisasi dan penggunaan electrostatic precipitator. Pada tahap kedua menggunakan teknologi fluidized bed combustion, gasifikasi batubara, dan magneto hydrodynamic

Agaknya telah jelas bahwa Indonesia memerlukan pembangkit-pembangkit listrik baru untuk memenuhi kenaikan kebutuhan listrik di masa yang akan datang. Di AS, untuk tahun 1990, Pembangkit Listrik Tenaga Nuklir (PLTN) dan Pembangkit Listrik Tenaga Uap Batubara (PLTU) diproyeksikan akan memegang masing-masing 12,5% dan 55% dari total pembangkitan listrik, suatu angka yang lebih besar dari kontribusi jenis-jenis sumber energi lain .

Dalam memperbandingkan kedua pilihan ini, perlu diingat bahwa masing-masing berasal dari teknologi yang berbeda, meskipun demikian keduanya menggunakan energi yang dihasilkannya untuk menguapkan air. Selanjutnya uap tersebut digunakan untuk memutar turbin. PLTN merupakan bidang yang cukup baru dibandingkan dengan PLTU. Hal ini perlu ditekankan mengingat Indonesia adalah negara yang sedang berkembang. Selain itu, karena pemakaian bahan-bahan radioaktif untuk PLTN, masalah-masalah yang dihadapi dan faktor-faktor pembentuk hambatan tersebut adalah dua lingkup yang berbeda yang kadang-kadang tidak dapat diperbandingkan secara langsung. Segi-segi polusi, biaya konstruksi, pemeliharaan, bahan bakar dan operasi serta keamanan dan keandalan sistem diambil sebagai pokok- pokok perbandingan dengan harapan masingmasing akan terwakili secara jelas dan menyeluruh.

Faktor Ekonomi

Secara umum, PLTN dapat digolongkan sebagai investasi dengan modal tinggi dan biaya tahunan yang rendah ( untuk bahan bakar, operasi dan pemeliharaan) atau disebut "high capital low annuities investment" sementara PLTU sebaliknya adalah sebuah investasi dengan " low capital high annuities ". Ini sedikit banyak dapat dihubungkan dengan perbedaan waktu konstruksi : 5-6 tahun untuk PLTU dan 7-10 tahun untuk PLTN. Oleh karenanya, biaya pembangunan PLTN lebih sensitif terhadap perubahan desain dan teknologi reaktor, perubahan standar keamanan, harga bahan baku reaktor dan suku bunga pinjaman dari kapital yang dipakai. Menurut statistik, pembangunan PLTN cenderung untuk "overbudget", dari hanya beberapa persen sampai sekitar dua kali lipat perkiraan biaya semula. Di lain pihak, PLTU lebih sensitif terhadap harga bahan bakar yang berubah-ubah sesuai dengan pasar yang ada meskipun biaya pembangunan tidak akan banyak beranjak dari yang semula diperkirakan. Untuk Indonesia, dimana penyediaan batubara untuk PLTU akan berasal dari perusahaan negara, faktor perubahan harga ini tidak akan sedrastis yang terjadi di pasar bebas.

Dari beberapa sumber yang dipakai untuk artikel ini diperoleh angka yang berbeda-beda untuk biaya rata-rata untuk kedua jenis pembangkit listrik ini, sehingga hanya dapat disimpulkan bahwa pada umumnya, terutama untuk negara-negara maju di Amerika Utara, Eropa Barat dan Asia, PLTN tergolong lebih murah dari PLTU untuk kapasitas listrik yang sama. Untuk negara-negara sedang berkembang yang masih harus mengimpor sebagian besar dari teknologi pembuatan reaktor tersebut, mungkin didapat angka yang berbeda untuk biaya pembuatan sebuah reaktor nuklir, tetapi sulit didapat data yang akurat untuk itu. Maka penulis hanya akan memberikan gambaran tentang angka-angka yang beriaku di negara-negara maju yang telah kami sebut di atas.

Maksud dari istilah biaya disini adalah rata-rata pertahun dari seturuh investasi yang dikeluarkan selama masa operasinya. Hanya saja untuk masa-masa mendatang harga sebuah PLTN akan mengalami tingkat kenaikan yang lebih tinggi daripada PLTU, terutama karena terdapatnya biaya de-commissioning (penutupan sebuah lokasi PLTN) yang tinggi. Oleh karena itu pada permulaan abad ke 21 nanti keduanya tidak akan berbeda jauh. Walaupun demikian harga PLTN tetap di bawah PLTU. Satu referensi mengungkapkan bahwa rendahnya harga PLTN tersebut dimungkinkan oleh adanya subsidi dari pemerintah setempat untuk memacu penggunaan teknologi baru ini. Tanpa subsidi tersebut, biaya sebuah PLTN mencapai 30-100% lebih mahal daripada PLTU. Tetapi teknologi maju yang didapat bisa dijadikan justifikasi untuk memilih teknologi tersebut meskipun dengan biaya yang lebih mahal.

Tabel perbandingan biaya pengoperasian pembangkit listrik tenaga nuklir dan batubara untuk beberapa negara maju

Faktor Pencemaran Lingkungan dan Kesehatan

Faktor pokok kedua dari perbandingan ini adalah tentang polusi yang dihasilkan oleh masing-masing pembangkit listrik. Dari data yang ada, pencemaran udara dari batubara adalah jauh lebih besar daripada bahan bakar nuklir, terutama asap dari hasil pembakaran batubara dalam tungku PLTU. Meskipun berdasarka Undang-Undang No. 23/1997 tentang Pengelolaan Lingkungan Hidup setiap PLTU baru diwajibkan untuk memakai "scrubbers" (flue-gas desulphurizer) untuk mengurangi kadar polutan yang dikeluarkannya, PLTU tetap memegang peranan penting datam pencemaran udara secara keseluruhan. Adapun beberapa polutan utama yang dihasilkan dari PLTU adalah sebagai berikut:

    • gas SOx yang dikenal sebagai sumber gangguan paru-paru dan berbagai penyakit pernafasan.
    • gas NOx, yang bersama dengan gas SOx adalah penyebab dari fenomena "hujan asam" yang terjadi di banyak negara maju dan berkembang, terutama yang menggantungkan produksi listriknya dari PLTB. Fenomena ini diperkirakan membawa dampak buruk bagi industri peternakan dan pertanian.
    • gas COx yang membentuk lapisan yang menyelubungi permukaan bumi dan menimbulkan efek rumah kaca ("green-house effect") yang pada akhirnya menyebabkan pergeseran cuaca yang telah terbukti di beberapa bagian dunia.
    • partikel-partikel debu selain mengadung unsur-unsur radioaktif juga berbahaya bagi kesehatan jika sampai terhirup masuk ke dalam paru-paru.
    • logam-logam berat seperti Pb,Hg,Ar,Ni,Se dan lain-lain, yang terbukti terdapat dengan kadar jauh di atas normal di sekitar PLTU.

Sebagai kondensator dari sikius uap air primer, kedua jenis pembangkit listrik di atas memanfaatkan air dari sumber yang berdekatan dengan lokasinya. Oleh karena itu polusi air yang disebabkan oleh masing-masing kurang lebih berimbang untuk ukuran generator yang sama. Sebuah PLTN rata-rata beroperasi dengan efisiensi panas 33% (40% untuk PLTU). Jadi kurang lebih dua pertiga dari panas yang dihasilkan oleh bahan bakar terpaksa dilepas ke lingkungan meialui sikius pendingin. Untuk sebuah PLT (nuklir atau batubara) dengan ukuran 1.000 MWe yang beroperasi dengan efesiensi 35%, dihasilkan sekitar 1.860 MW sisa panas. Jika air diambil dengan debit 100 m3/s, maka air yang keluar dari sikius sekunder ini akan mengalami kenaikan suhu sekitar 4,5oC, suatu angka yang cukup untuk menggangu kesetimbangan ekosistim dari organisms yang hidup di sumber air tersebut. Dampak ini akan bertambah lagi dengan adanya bahan-bahan kimia pemurni air yang dicampurkan sebelum air tersebut masuk ke siklus pendingin.akan penggunaan energy Batubara setelahproses pembakaran menerapakan teknologi bersih antara lain: Teknologi Denitrifikasi,Teknologi Dedusting,Teknologi Desulfurisasi,Teknologi C2 Removal,Teknologi FBC,Teknologi MHD, dan Teknologi kombinasi IGCC dan Fuel Cell.teknologi-teknologi diatas merupakan teknologi untuk proses pembakaran pada energi batubara sehingga asap yang dihasilkan itu tidak terlalu banyak sehingga tingkat polusi yang disebabkan sedikit.

Bertentangan dengan anggapan umum, radiasi sinar-sinar radioaktif (selanjutnya akan disebut radiasi) bukanlah sumber utama polusi pada PLTN. Malah terbukti bahwa secara rata-rata untuk seorang yang tinggal sampai 1 km dari sebuah reaktor nuklir, dosis radiasi yang diterimanya dari bahan-bahan yang dipakai di reaktor tersebut adalah kurang dari 10% dari dosis radiasi alam (dari batuan radioaktif alami, sinar kosmis, sinar-sinar radioaktif untuk maksud-maksud medis) .

Kalau untuk tambang-tambang batubara dikenal istilah "black lung", dimana partikel batubara yang terh-irup oleh para pekerja tambang mengendap di paru-paru dan menimbulkan berbagai macam gangguan kesehatan, para pekerja di tambang Uranium (bahan utama untuk bahan bakar PLTN) terutama terkena radiasi dari Carbon 14 (C-14) dan gas Radon yang terpancar dari Uranium alam. Dari data statistik didapat bahwa kedua jenis radiasi ini menelan korban jiwa kurang lebih 1 orang tiap 20 juta MWH listrik yang dihasilkan PLTN per tahun. Tetapi karena kedua unsur tersebut mempunyai waktu paruh yang sangat besar, dampaknya akan terus terasa untuk masa-masa yang akan datang. Salah satu pencegahan adalah dengan menempatkan sisa-sisa Uranium tambang di bawah permukaan tanah dimana radiasinya akan ditahan oleh dinding lapisan penyekat khusus, tetapi karena praktek ini juga dilakukan untuk sisa Uranium yang telah tidak mengandung C-14 dan Radon, pada dasarnya belum ada tindakan khusus yang dicanangkan untuk penangangan bahaya dari kedua unsur ini.

Perlu disimak bahwa masalah radiasi bukan semata-mata berlaku untuk PLTN. Misainya untuk kapasitas 1.000MWe, PLTN menghasilkan 50kCi radiasi yang sebagian besar berasal dari gas Xenon dan Krypton sementara PLTU akan mengeluarkan 2Ci radiasi yang keluar dari cerobong asapnya. Meskipun jumlahnya jauh lebih kecil, radiasi dari PLTU mempunyai dampak kesehatan yang lebih besar karena kalau abu tersebut terhisap akan menetap di paru-paru, sumsum tulang atau jaringan yang lain dan merupakan ancaman yang kontinyu sementara radiasi PLTN lebih berupa sinar yang menembus tubuh dan tidak menetap. Pada kedua kasus ini, radiasi yang dihasilkannya masih berada jauh dibawah limit masing-masing.

Faktor Keamanan

Salah satu sumber ketidakpastian masyarakat tentang PLTN disebabkan oleh adanya kemungkinan kegagalan sistim yang mengakibatkan bencana pada PLTN, seperti yang terjadi di TMI dan Chernobyl. Karakterisitik bencana pada PLTN dapat didefinisikan sebagai insiden dengan "low probability, high consequences'. Suatu bencana disebut katastrofi jika mengakibatkan sedikitnya 3.000 korban jiwa atau 45.000 orang cedera; maka probabilitas terjadinya katastrofi adalah sangat kecil, yaitu 1 tiap 107 tahun. Di samping katastrofi,

insiden-insiden dalam skala lebih kecil yang terjadi di PLTN diperkirakan mengakibatkan kurang lebih 2 korban jiwa tiap 20 juta MWh per tahun listrik dari kanker, tumor, penyakit genetik dan lain-lainnya. Karena pada PLTU angka korban insiden ini sedemikian kecilnya sehingga dapat diabaikan, faktor ini dapat dijadikan satu pertimbangan dalam memilih jenis Pembangkit Tenaga Listrik untuk sumber listrik kita di masa depan.

segi keamanan (safety) dari kedua pilihan ini terhadap kemungkinan kecelakaan, terlihat bahwa sebagian besar risiko ditemui pada saat penambangan bahan bakar tersebut. Di AS, sejauh ini teknologi PLTU telah menelan 1.300 korban jiwa dan 40.000 orang cedera sementara untuk PLTN 5.000 orang cedera dan kurang dari 100 korban jiwa

Limbah nuklir sampai saat ini tetap menjadi sumber utama kecemasan masyarakat banyak tentang PLTN. Sebuah PLTN dengan kapasitas 1.000 MWe membutuhkan sekitar 1 metrik ton bahan bakar dan menghalkan limbah sebanyak kira-kira 70 liter per hari. Sampai tahun 1980, AS telah menghasilkan 36 juta ton limbah dengan radiasi rendah dan 8.300 ton limbah dengan radiasi tinggi. Jumlah ini sebenarnya menghasilkan dampak radiologis yang setingkat dengan ratusan juta ton sampah yang dihasilkan oleh PLTU. Hanya karena konsentrasi radiasi yang tinggi, limbah PLTN membutuhkan suatu penanganan yang khusus.

Selama ini, sisa bahan bakar dengan radiasi tinggi disimpan sementara di kolam-kolam penampungan sehingga efek radiasi yang ditimbulkannya dapat diabaikan, tetapi dengan semakin meningkatnya pemakain PLTN dalam produksi listrik, kebutuhan akan suatu metode penyimpanan permanen yang tepercaya terasa semakin mendesak. Meskipun sejauh ini belum ada satu cara yang dapat diterima secara meluas, beberapa metode yang diusulkan meliputi penyimpanan di tambang garam, lapisan granit, dibawah lapisan air tanah atau di dasar laut. Satu syarat mutlak yang telah dipenuhi oleh lokasi-lokasi ini terjaminnya kestabilan geologis untuk masa-masa yang akan datang.

Untuk PLTN, satu tambahan pertimbangan adalah adanya ancaman terorisme, meskipun sampai sekarang belum ada realisasinya. Meskipun menurut para ahli penggelapan Plutonium untuk pembuatan bom nuklir sederhana lebih merupakan fiksi daripada kenyataan, hendaknya hal ini diperhitungkan juga dalam pemilihan jenis Pembangkit Tenaga Listrik dan lokasinya di masa mendatang. Tetapi dengan sikap waspada dan hati-hati yang selama ini dianut dalam lingkup penggunaan bahan nuklir dan fakta bahwa untuk Indonesia risiko ini adalah lebih kecil daripada di negara-negara lain yang lebih maju dan liberal, agaknya untuk saat ini hal tersebut hanya akan merupakan pertimbangan minor saja.

Sumber :

Agus Sugiyono*)

(Sumber: Andang Nugroho dan Hindro Mujianto - Permias) Ir. Nanan Tribuana, Subdirektorat Pengawasan Lingkungan Ketenagalistrikan Ditjen LPE

gambar :

keajaibansains.wordpress.com

picsed.com

DAFTAR PUSTAKA

1. Nishikawa, N., Contribution to the Global

environment Measure Through Integrated

Gasification Combined Cycle Development,

Proceedings on Clean Coal Day 1995

International Symposium, NEDO, Tokyo, 2. Pape, H., Captive Power in Indonesia,

Development in the Period 1980 - 1997, The

World Bank.

3. Princiotta, F.T., Pollution Control for Utility

Power Generation, 1990 to 2020, Proceeding

of Energy and the Environment un the 21st, p.

624-649, The MIT Press, 1991.

4. PT PLN Persero, PLN Statistik 1997.

5. Siegel, J.S. and Temchin J.R., Role of Clean

Coal Technology in Electric Power in the 21st

Century, Proceeding of Energy and the

Environment un the 21st, p. 623-630, The MIT

Press, 1991.

6. The State Ministry for Environment the

Republic of Indonesia, Greenhouse Gases

Inventory, Mitigation Options and National

Strategy on Energy Sector, Final Report, May

1999.

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun