Kashyap, A. K., Parmar, R. S., Agrawal, M., & Gupta, H. (2017). An Evaluation of Digital Image Forgery Detection Approaches. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1703.09968Â
Luo, H., Cai, M., & Cui, Y. (2021). Spread of Misinformation in Social Networks: Analysis Based on Weibo Tweets. Security and Communication Networks, 2021, 1. https://doi.org/10.1155/2021/7999760Â
Mateus, J.-C. (2021). Media literacy for children: Empowering citizens for a mediatized world. Global Studies of Childhood, 11(4), 373. https://doi.org/10.1177/20436106211014903Â
Mohammed, T. M., Bunk, J., Nataraj, L., Bappy, J. H., Flenner, A., Manjunath, B. S., Chandrasekaran, S., Roy--Chowdhury, A. K., & Peterson, L. (2018). Boosting Image Forgery Detection using Resampling Features and Copy-move analysis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1802.03154Â
Nyhan, B. (2020). Facts and Myths about Misperceptions. The Journal of Economic Perspectives, 34(3), 220. https://doi.org/10.1257/jep.34.3.220Â
Sharma, P., Kumar, M., & Sharma, H. K. (2022). Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimedia Tools and Applications, 82(12), 18117. https://doi.org/10.1007/s11042-022-13808-wÂ
Shu, K. (2023). Combating Disinformation on Social Media and Its Challenges: A Computational Perspective. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 15454. https://doi.org/10.1609/aaai.v37i13.26821Â
Su, Q., Wan, M., Liu, X., & Huang, C. (2020). Motivations, Methods and Metrics of Misinformation Detection: An NLP Perspective. Natural Language Processing Research, 1, 1. https://doi.org/10.2991/nlpr.d.200522.001Â
Thomson, T. J., Angus, D., Dootson, P., Hurcombe, E., & Smith, A. (2020). Visual Mis/disinformation in Journalism and Public Communications: Current Verification Practices, Challenges, and Future Opportunities. Journalism Practice, 16(5), 938. https://doi.org/10.1080/17512786.2020.1832139Â
Uliyan, D., & Alshammari, M. T. (2020). Investigation of image forgery based on multiscale retinex under illumination variations. Journal of Intelligent & Fuzzy Systems, 1. https://doi.org/10.3233/jifs-200172Â
VidalMata, R. G., Saboia, P., Moreira, D., Jensen, G. J., Schlessman, J., & Scheirer, W. J. (2023). On the Effectiveness of Image Manipulation Detection in the Age of Social Media. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2304.09414Â